

Running stateful containers with

Kubernetes and Hedvig

Solution Whitepaper

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

2

Table of Contents

Executive overview ... 3
Introduction .. 4
Solution Components ... 5

Hedvig ... 5
Hedvig Storage Service .. 6
Hedvig Storage Proxy ... 6
Hedvig Virtual Disk ... 7

Kubernetes ... 7
Kubernetes Master ... 9
Kubernetes Node ...10

Hedvig deployment options ... 11
Hyperscale ...11
Hyperconverged ..11

Kubernetes in Production .. 12
Health Check and Resource Monitoring...13
Logging ...13
Persistent Volumes ...14
Networking ...14
Service Discovery...14
Load Balancing ...14

Creating stateful containers using Hedvig ... 16
Kubernetes Persistent Volume Framework .. 16
Persistent Volumes on Hedvig .. 18

Summary and Conclusion .. 21
Additional resources .. 22

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

3

Executive overview
Containers are at the center of cloud-ready and cloud-native applications. Container deployments are

slowly evolving from small DevOps environments managed by developers to mission-critical, production-

ready environments. Kubernetes has proven itself as one of the prominent container orchestrators for

managing containerized workloads and services. It orchestrates computing, networking, and storage

infrastructure on behalf of user workloads. The next step in container revolution is to find the scalable

and persistent storage solution needed to build the stateful containers.

Hedvig provides a container-native persistent storage solution that brings all the enterprise storage

capabilities designed to run virtualization and bare-metal workloads at a large scale. Hedvig’s instant

volume provisioning, cloud-easy storage management, and workflow automation using REST-based APIs

enable a storage infrastructure that can be used to run a large number of stateful containers in a cost-

effective manner.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

4

Introduction
Hedvig is a software-defined storage platform built on a true, hyperscale architecture that uses modern,

distributed systems techniques to meet all primary, secondary, and cloud data needs. The Hedvig

Distributed Storage Platform transforms industry-standard x86 or ARM servers into a storage cluster

that scales from a few nodes to thousands of nodes.

Hedvig's patented Universal Data Plane™ architecture stores, protects, and replicates data across any

number of private and public cloud data centers. The advanced software stack of the Hedvig Distributed

Storage Platform simplifies all aspects of storage with a full set of enterprise data capabilities, which can

be granularly provisioned at the application level and automated via a complete set of APIs.

This whitepaper describes the Hedvig Distributed Storage Platform architecture, its enterprise storage

capabilities, and how Hedvig provides scale-out storage for containerized applications over Kubernetes.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

5

Solution Components
• Hedvig

• Kubernetes

Hedvig

The Hedvig Distributed Storage Platform is a modern storage solution for any enterprise compute

environment running at any scale. Designed with distributed systems DNA, the Hedvig platform gets

better and smarter as it scales, transforming a cluster of x86 or ARM servers into a highly flexible, cost-

effective storage system. It is a software-defined storage solution that enables:

• A scale-out software architecture.

Achieve the elasticity needed to grow data services in lock step with changing business

requirements.

• Native, multi-site replication.

Natively replicate data among sites to ensure locality and availability.

• Full automation and orchestration.

Automate provisioning and management via orchestration frameworks and APIs for composable

infrastructure.

• Application-specific data services.

Match application needs with individual storage policies to meet unique data requirements.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

6

Figure 1: The Hedvig Distributed Storage Platform

The Hedvig Distributed Storage Platform is based on three core components:

• Hedvig Storage Service

• Hedvig Storage Proxy

• Hedvig Virtual Disk

Hedvig Storage Service

The Hedvig Storage Service is a patented distributed systems engine that:

• Scales storage performance and capacity with off-the-shelf x86 and ARM servers.

• Delivers all of the storage options and capabilities required for an enterprise deployment.

• Runs on every storage node.

Hedvig Storage Proxy

The Hedvig Storage Proxy is a lightweight VM or container that:

• Enables access to the Hedvig Storage Service via industry-standard protocols (NFS, iSCSI, S3).

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

7

• Enables client-side caching and deduplication with local SSD and PCIe flash resources for fast local

reads and efficient data transfers.

• Provides an encryption engine for in-flight and data at rest.

Hedvig Virtual Disk

The Hedvig Virtual Disk is the fundamental abstraction unit of the Hedvig Distributed Storage Platform.

Using this feature, you can:

• Spin up any number of concurrent Virtual Disks.

• Have full confidence that each Virtual Disk is thinly provisioned and instantly available.

Kubernetes

Kubernetes is Google’s open source portable, extensible platform for managing containerized workloads

and services, which facilitates both declarative configuration and automation.

It orchestrates computing, networking, and storage infrastructure on behalf of user workloads. This

provides much of the simplicity of Platform as a Service (PaaS), with the flexibility of Infrastructure as a

Service (IaaS).

The following figure provides a quick overview of a typical Kubernetes cluster, outlining the different

components and how they interact with each other.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

8

Figure 2: Kubernetes cluster overview

The Kubernetes cluster has two main components:

• Kubernetes Master

• Kubernetes Node

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

9

Kubernetes Master

The Kubernetes master server acts as the primary control plane for the Kubernetes cluster. It serves as

the main contact point for administrators and users and also provides many cluster-wide systems for the

relatively unsophisticated worker nodes.

Overall, the components on the master server work together to accept user requests, determine the

best ways to schedule workload containers, authenticate clients and nodes, adjust cluster-wide

networking, and manage scaling and health-checking responsibilities.

Here are the key components of the Kubernetes Master server. These components can be installed on a

single server or distributed across multiple servers.

• Etcd

Etcd is a highly available key value store used by Kubernetes to store configuration data that can be

accessed by each of the nodes in the cluster. This can be used for service discovery and can help

components configure or reconfigure themselves according to up-to-date information. It also helps

maintain the cluster state with features such as leader election and distributed locking.

• API Server

The API Server is the Kubernetes REST API entry point that processes operations on Kubernetes

objects (Pods, Deployments, Stateful Sets, Persistent Volume Claims, etc.). It is also responsible for

making sure that the etcd store and the service details of deployed containers are in agreement. It

acts as the bridge between various components to maintain cluster health and disseminate

information and commands.

• Controller Manager

The Controller Manager runs control loops that manage objects from kube-apiserver and perform

actions to make sure these objects maintain the states described by their specs.

• Scheduler

The process that actually assigns workloads to specific nodes in the cluster is the Scheduler. This

service reads the operating requirements of the workload, analyzes the current infrastructure

environment, and places the work on an acceptable node or nodes.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

10

Kubernetes Node

The Kubernetes Node servers are responsible for running containers. Node servers have a few

requirements that are necessary for communicating with master components, configuring container

networking, and running the actual workloads assigned to them.

Here are the key components of the Kubernetes node servers.

• Container Runtime

The Container Runtime is responsible for starting and managing containers, applications

encapsulated in a relatively isolated, but lightweight operating environment. Each unit of work on

the cluster is, at its basic level, implemented as one or more containers that must be deployed. The

Container Runtime on each node is the component that finally runs the containers defined in the

workloads submitted to the cluster.

• Kubelet

The Kubelet service communicates with the master components to authenticate to the cluster and

receive commands and work. Work is received in the form of a manifest that defines the workload

and the operating parameters. The kubelet process then assumes responsibility for maintaining the

state of the work on the node server. It controls the Container Runtime to launch or destroy

containers as needed.

• Kube Proxy

To manage individual host subnetting and make services available to other components, a small

proxy service called kube-proxy is ran on each node server. This process forwards requests to the

correct containers, does primitive load balancing, and is generally responsible for making sure the

networking environment is predictable and accessible, but isolated where appropriate.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

11

Hedvig deployment options

Hedvig Distributed Storage Platform components can be configured to support two types of

deployments:

• Error! Reference source not found.

• Error! Reference source not found.Error! Reference source not found.

Hedvig also provides the flexibility to leverage both in the same storage cluster.

Hyperscale

Hyperscale deployments scale storage resources independently from application compute resources.

With hyperscale, storage capacity and performance scale out horizontally by adding commodity servers

running the Hedvig Storage Service.

Application hosts consuming storage resources scale separately with the Hedvig Storage Proxy, allowing

for the most efficient usage of storage and compute resources.

Hyperconverged

Hyperconverged deployments scale compute and storage in lockstep, with workloads and applications

residing on the same physical nodes as data.

In this configuration, the Hedvig Storage Proxy and the Hedvig Storage Service software are packaged

and deployed as VMs on a compute host with a hypervisor installed.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

12

Kubernetes in Production
Kubernetes has established itself as a production-grade container orchestration solution that automates

management of cloud-native applications. Kubernetes provides a complete set of features that greatly

simplifies automated rollout and rollback, auto-scaling, and self-healing of containerized applications.

These features enable application developers to consume the platform at scale through a self-service

portal, thereby enhancing developer productivity.

In a typical Kubernetes model, developers have more responsibility for supporting their own

applications. Therefore, the Ops team may consider a separation of concerns to clarify roles and to help

people focus on their service. To address this, the Ops team may assign a namespace for a new project

and allocate resources to that namespace for a particular application service. However, most modern-

day applications include multiple containerized services. Therefore, the Ops team may find it more

logical to deploy and hand over a separate Kubernetes cluster for multiple related teams and services.

This can impact manageability especially when end-to-end microservices applications span multiple

clusters.

As more developers are onboarded, it may be hard to identify the appropriate span of control for a

specific developer, team, or project. As the number of applications and namespaces grow, lifecycle

management of Kubernetes becomes a challenge. Therefore, enterprise readiness for Kubernetes

includes a collection of features or attributes for everything from application and resource monitoring,

log collection, identity and authorization, to network isolation. These are the features any enterprise

would need to successfully run production Kubernetes environments at scale.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

13

The following sections outline the main features to consider when running your own hosted Kubernetes

for production.

• Health Check and Resource Monitoring

• Logging

• Persistent Volumes

• Networking

• Service Discovery

• Load Balancing

Health Check and Resource Monitoring

The internal health checking feature in Kubernetes will periodically check your container and restart, if a

health check fails. If restarting does not help, Kubernetes will try to restart again while increasing the

wait time between restarts. This feature lets you see the reason for the failed health check, which helps

with debugging. When a whole node fails in the cluster, Kubernetes will redistribute all containers

across the remaining nodes.

The default resources monitoring add-ons in Kubernetes include Heapster, InfluxDB, and Grafana. These

add-ons are limited in terms of providing support for queries over stats collected and providing detailed

insights. Prometheus is a powerful open-source system for collecting metrics and storing them in a

searchable database. With a highly dimensional data model, you can run queries to slice and dice a

collected series of data to generate ad-hoc graphs, tables, and alerts.

Logging

The default logging add-ons in Kubernetes include Fluentd, Elasticsearch, and Kibana. Depending on

your underlying infrastructure, it is necessary to configure Fluentd to look for interesting log files and

parse them. By default, all logs from containers stdout are ingested, and all logs are also labeled with

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

14

Kubernetes metadata, which makes them easy to filter through. Elasticsearch can be used to parse

application logs and run detailed queries by configuring the applications to log in JSON format.

Persistent Volumes

Kubernetes offers a wide variety of options to set up persistent storage. As a best practice, applications

should not use local storage and instead leverage a distributed data store outside the cluster. A detailed

description of how Hedvig solves this problem is presented later in this document.

Networking

Kubernetes has a requirement that pods can connect via a "flat networking space." Kubernetes provides

a number of ways to implement a network model. Flannel is a very simple overlay network that satisfies

Kubernetes requirements. Although it works well in isolated Kubernetes environments, a major

drawback of Flannel is that a Pod IP cannot be accessed from outside the Kubernetes cluster.

Project Calico provides a highly scalable networking and network policy solution for connecting

Kubernetes pods based on the same IP networking principles as the internet. In Project Calico, broadcast

production IP by BGP working on BIRD containers is launched on each Kubernetes node. By default,

broadcast is within the cluster only. By setting peering routers outside the cluster, it is possible to access

a Pod IP from outside the Kubernetes cluster.

Another solution to enable Pod IP access outside the Kubernetes cluster is Romana. It avoids overlays as

well as BGP because it aggregates routes. It uses its own IP address management (IPAM) to maintain the

route hierarchy.

Service Discovery

Service Discovery is enabled by Kubernetes using the SkyDNS add-on. This is provided as a cluster

internal service, and it is accessible in clusters, such as ClusterIP. By broadcasting ClusterIP by BGP, name

resolution also works from outside the Kubernetes cluster.

Load Balancing

Kubernetes introduces a virtual network layer inside the cluster called services. Services, together with

the DNS add-on, create a powerful way to load balance internal traffic between containers within the

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

15

cluster. Containers can reference other containers with a service name without the need to change this

reference when you scale the referenced service up and down.

For load balancing traffic from outside the cluster, Kubernetes can automatically provision a load

balancer for each of your services in your cloud environment. Creating a load balancer for every service

in your cluster might become costly and hard to keep track of. There are multiple choices of external

service load balancers for Kubernetes, such as NodePort, LoadBalancer, and Ingress.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

16

Creating stateful containers using Hedvig
On-disk files in a Container are ephemeral, which presents some problems for non-trivial applications

when running in Containers. When a Container crashes, kubelet will restart it, but the files will be lost —

the Container starts with a clean state. The Kubernetes Persistent Volume framework solves this

problem.

The following sections outline the use of Persistent Volumes in Kubernetes and Hedvig:

• Kubernetes Persistent Volume Framework

• Persistent Volumes on Hedvig

Kubernetes Persistent Volume Framework

The Kubernetes Persistent Volume Framework consists of three main entities:

• PersistentVolume — for provisioning volumes on storage systems

• PersistentVolumeClaim — for attaching PersistentVolume to application containers

• StorageClass — for defining the properties of PersistentVolume

PersistentVolume resources are used to manage durable storage in a cluster. PersistentVolumes can be

dynamically provisioned; the user does not have to manually create and delete the backing storage.

PersistentVolumes are cluster resources that exist independently of Pods. This means that the disk and

data represented by a PersistentVolume continue to exist as the cluster changes and as Pods are deleted

and recreated.

A PersistentVolumeClaim is a request for and claim to a PersistentVolume resource.

PersistentVolumeClaim objects request a specific size, access mode, and StorageClass for the

PersistentVolume. If a PersistentVolume that satisfies the request exists or can be provisioned, the

PersistentVolumeClaim is bound to that PersistentVolume. Pods use claims as Volumes. The cluster

inspects the claim to find the bound Volume and mounts that Volume for the Pod.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

17

A StorageClass provides a way for administrators to describe the “classes” of storage that they offer.

Different classes might map to quality-of-service levels, or to backup policies, or to arbitrary policies

determined by cluster administrators. Each StorageClass contains the fields provisioner, parameters, and

reclaimPolicy, which are used when a PersistentVolume belonging to the class must be dynamically

provisioned.

Kubernetes’ dynamic volume provisioning allows storage volumes to be created on-demand. Before

dynamic provisioning, cluster administrators had to manually make calls to their storage provider to

provision new storage volumes, and then create Persistent Volume (PV) objects to represent them in

Kubernetes. With dynamic provisioning, these two steps are automated, eliminating the need for cluster

administrators to pre-provision storage. Instead, storage resources can be dynamically provisioned using

the provisioner specified by the StorageClass object.

To request storage for Pods, and in turn containers, Persistent Volume Claim (PVC) can either statically

or dynamically consume a PV resource based on storage size and access mode. StorageClasses use

provisioners that are specific to the storage platform provider to give Kubernetes access to the storage

volume being used. For dynamic volume provisioning, PVC informs Kubernetes which storage class to

talk to, in order to create PVs using a specific backend storage.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

18

Persistent Volumes on Hedvig

The following figure provides an overview of how Hedvig integrates with any Kubernetes cluster,

outlining different components and how they interact with each other.

Figure 3: Hedvig Integrated with a Kubernetes cluster

The Hedvig Dynamic Provisioner integrates with Kubernetes and provides a solution to create PVs

dynamically with Hedvig as an external storage. The Dynamic Provisioner is installed as a Pod in the

Kubernetes cluster. After installation, you can use it by mentioning it in a storage class template, which

will then be consumed by PVC. When a Pod requests a storage volume using the previously mentioned

PVC, a PV is created dynamically meeting those requirements, and it will be provided to the Pod in real

time.

In addition to the Dynamic Provisioner, the Hedvig Storage Proxy is deployed as a Daemonset in the

Kubernetes cluster. This ensures that Kubernetes spawns one storage proxy Pod on every Kubernetes

node. When a PV is dynamically created and mounted in the application Pod, any I/O operations to that

PV are handled by the storage proxy Pod running on the same Kubernetes node as the Application Pod.

If the Application Pod is rescheduled or restarted on a new Kubernetes node, it is reattached to its PV

through the storage proxy Pod running on the new Kubernetes node.

Storage volume attributes can be tuned using storage classes. Here is an example of a storage class with

deduplication and compression enabled for the dynamically created storage volumes:

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

19

apiVersion: storage.k8s.io/v1beta1

kind: StorageClass

metadata:

 name: sc-hedvig-compress-dedup

provisioner: hedvig.io/provisioner

parameters:

 backendType: "hedvig-block"

 compressed: "true"

 dedupEnable: "true"

Here is an example of a PersistentVolumeClaim that uses the Hedvig Dynamic Provisioner to dynamically

create a PersistentVolume using the StorageClass defined above:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-centos-test

 annotations:

 volume.beta.kubernetes.io/storage-class: sc-hedvig-compress-dedup

 provisioner.hedvig.io/reclaimPolicy: Retain

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

20

Here is a list of the Hedvig volume attributes that can be configured using storage classes.

key values default value notes

dedupEnable true/false false

compressed true/false false

cacheEnable true/false false

rf
(replication factor)

1 to 6 3

rp
(replication policy)

Agnostic/RackAware/D
ataCenterAware

Agnostic

dcNames comma-separated list
of data center names

 This applies only to a
replication policy (rp) of

DataCenterAware.

diskResidence flash/hdd hdd In an all-flash cluster,
diskResidence should
always be set to flash.

encryptionEnable true/false false

blockSize 512/4096

4096

description any string ""

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

21

Summary and Conclusion
Hedvig brings enterprise-hardened storage features to containerized workloads, and Kubernetes

simplifies deployment and management of containers at a large scale. Together, Hedvig and Kubernetes

empower enterprises to build a production-ready container infrastructure for stateful applications that

is designed to be cloud-easy and web-scale.

© 2018 Hedvig Inc. All rights reserved.

SOLUTION WHITEPAPER

22

Additional resources
Hedvig's architecture overview:

https://www.hedvig.io/technical-overview-whitepaper

Hedvig’s Docker solution brief:

https://www.hedvig.io/hubfs/Website_Resources/Updated Assets 2018/Hedvig - Solutions
Brief - Docker.pdf

Hedvig Inc. believes the information in this publication is accurate as of its publication date. The information is subject to change without notice. The information in this

publication is provided as is. Hedvig Inc. makes no representations or warranties of any kind with respect to the information in this publication and specifically disclaims implied

warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any Hedvig Inc. software described in this publication requires an applicable

software license. All trademarks are the property of their respective owners.

