
	

	

Persistent Storage for Kubernetes using Hedvig

This	document	talks	about	how	Hedvig	integrates	natively	with	Kubernetes	as	a	scale-out	
distributed	storage	platform	for	stateful	containerized	applications.	Specifically,	Hedvig	
integrates	with	the	Kubernetes	Persistent	Volume	framework	to	allow	end	users	to	manage	
all	aspects	of	persistent	volumes	using	native	Kubernetes	constructs.	
	
Persistent Volume Framework	

Before	presenting	the	Hedvig-Kubernetes	integration,	it	is	necessary	to	understand	how	
Kubernetes	manages	the	lifecycle	of	storage	resources.	In	a	nutshell,			

• A	storage	resource	is	configured	by	a	StorageClass			

• A	storage	resource	is	provisioned	as	a	PersistentVolume		

• A	storage	resource	is	consumed	through	a	PersistentVolumeClaim	

StorageClass,	PersistentVolume	and	PersistentVolumeClaim	are	the	three	main	constructs	
described	by	the	Persistent	Volume	framework.	

PersistentVolume	resources	are	used	to	manage	durable	storage	in	a	cluster.	
PersistentVolumes	can	be	dynamically	provisioned;	the	user	does	not	have	to	manually	
create	and	delete	the	backing	storage.	

PersistentVolumes	are	cluster	resources	that	exist	independently	of	Pods.	This	means	that	
the	disk	and	data	represented	by	a	PersistentVolume	continue	to	exist	as	the	cluster	
changes	and	as	Pods	are	deleted	and	recreated.	

A	PersistentVolumeClaim	is	a	request	for	and	claim	to	a	PersistentVolume	resource.	
PersistentVolumeClaim	objects	request	a	specific	size,	access	mode,	and	StorageClass	for	
the	PersistentVolume.	If	a	PersistentVolume	that	satisfies	the	request	exists,	or	can	be	
provisioned,	the	PersistentVolumeClaim	is	bound	to	that	PersistentVolume.	

Pods	use	claims	as	Volumes.	The	cluster	inspects	the	claim	to	find	the	bound	
PersistentVolume	and	mounts	that	PersistentVolume	for	the	Pod.	

A	StorageClass	provides	a	way	for	administrators	to	describe	the	“classes”	of	storage	that		

	

	

	

	

they	offer.	Different	classes	might	map	to	quality-of-service	levels,	or	to	backup	policies,	or	
to	arbitrary	policies	determined	by	cluster	administrators.	
	
Dynamic Provisioning	

Dynamic	volume	provisioning	allows	storage	volumes	to	be	created	on-demand.	Before	
dynamic	provisioning,	cluster	administrators	had	to	manually	make	calls	to	their	storage	
provider	to	provision	new	storage	volumes,	and	then	create	Persistent	Volume	(PV)	objects	
to	represent	them	in	Kubernetes.	

With	dynamic	provisioning,	these	two	steps	are	automated,	eliminating	the	need	for	cluster	
administrators	to	pre-provision	storage.	Instead,	storage	resources	can	be	dynamically	
provisioned	using	the	provisioner	specified	by	the	StorageClass.	
	
Architecture	

The	following	figure	provides	an	overview	of	how	Hedvig	integrates	with	any	Kubernetes	
cluster,	outlining	the	different	components	and	how	they	interact	with	each	other.	

	

Hedvig	Dynamic	Provisioner	is	an	out-of-tree	storage	provisioner	for	Hedvig	that	allow	
Kubernetes	users	to	provision	Hedvig	virtual	disks	and	consume	them	as	persistent		

	

	

	

	

	
volumes	using	native	Kubernetes	constructs.	Hedvig	Dynamic	Provisioner	operates	by	
setting	a	watch	at	the	Kubernetes	API	server	for	events	(add/update/delete)	specific	to	
Persistent	Volume	constructs.	Hedvig	Dynamic	Provisioner	is	installed	as	a	deployment	in	
Kubernetes.	
	
Hedvig	Storage	Proxy	is	Hedvig’s	iSCSI	target	that	enables	Kubernetes	users	to	consume	
Hedvig	virtual	disks	as	iSCSI	persistent	volumes	for	stateful	applications.	Hedvig	Storage	
Proxy	enables	client-side	caching	and	deduplication	with	local	SSD	and	PCIe	flash	resources	
for	fast	local	reads	and	efficient	data	transfers.	It	also	provides	an	encryption	engine	for	
data	in-flight	and	at	rest.	

Hedvig	Storage	Proxy	is	deployed	as	a	Daemonset	in	the	Kubernetes	cluster.	This	ensures	
that	Kubernetes	spawns	one	Hedvig	Storage	Proxy	pod	on	every	Kubernetes	node,	thereby	
enabling	applications	to	migrate	between	Kubernetes	nodes	without	losing	access	to	their	
volumes	or	data.	As	the	Kubernetes	cluster	scales,	Hedvig	Storage	Proxy	scales	with	it	
automatically.	
	
Storage Operations	

The	following	steps	describe	a	sequence	of	events	that	occur	when	a	Kubernetes	user	
issues	a	request	to	provision	storage.	These	events	explain	how	the	Hedvig	components	
interact	with	Kubernetes	and	utilize	the	Kubernetes	constructs	to	allow	end	users	to	
seamlessly	manage	Hedvig	storage	within	a	Kubernetes	cluster.	

1. The	administrator	creates	one	or	more	storage	classes	(StorageClass)	for	Hedvig.	

2. The	user	creates	a	PersistentVolumeClaim	by	specifying	the	StorageClass	to	use	and	
the	size	of	PersistentVolume	requested.	

3. Kubernetes	identifies	Hedvig	Dynamic	Provisioner	as	the	provisioner	to	use	for	this	
PersistentVolumeClaim	based	on	the	StorageClass	specified.	

4. Hedvig	Dynamic	Provisioner	provisions	a	Hedvig	Virtual	Disk	on	the	underlying	
Hedvig	cluster	with	the	size	requested	and	the	attributes	listed	in	the	StorageClass.	

5. Hedvig	Dynamic	Provisioner	presents	the	virtual	disk	as	a	LUN	to	the	Hedvig	
Storage	Proxies	and	creates	a	PersistentVolume	in	Kubernetes	of	type	iSCSI		

	

	

	

	

	
corresponding	to	the	Hedvig	virtual	disk.	

6. Kubernetes	binds	the	PersistentVolumeClaim	to	the	PersistentVolume	created.	The	
PersistentVolume	can	be	consumed	by	any	pod	that	uses	the	
PersistentVolumeClaim.	

Installation

This	section	will	walk	you	through	the	process	of	installing	the	Hedvig	Dynamic	
Provisioner.	

Download	the	latest	version	of	the	Hedvig	Dynamic	Provisioner	installer	tarball	from	the	
Hedvig	portal	onto	any	client	machine	configured	to	run	the	kubectl	commands.	
	

# tar -xvzf hedvig-installer.tar.gz	
# ls hedvig-installer/	
hedvig-clusterrolebindings-k8s.yaml hedvigctl hedvig-namespace
.yaml install_hedvig.sh setup

hedvig-clusterroles-k8s.yaml hedvig-deployment.yaml hedvig-serviceac
counts.yaml manifests uninstall_hedvig.sh	

	
Update	the	following	configuration	values	in	the	setup/backend.json	file	to	point	to	the	
Hedvig	Storage	Cluster:	*	StorageCluster	—	Name	of	the	Hedvig	Storage	Cluster	*	
StorageNode	—	Hostname/IP	address	of	one	of	the	Hedvig	Storage	Cluster	Nodes	*	
KubeClusterID	—	Unique	id	for	the	Kubernetes	cluster	
	
Update	the	image	name	in	hedvig-deployment.yaml	to	
hedviginc/hedvigprovisioner:<tag>	and	set	the	<tag>	to	the	most	recently	released	
version	of	the	Hedvig	Dynamic	Provisioner.	

	
A	complete	list	of	available	versions	can	be	found	here:	
https://hub.docker.com/r/hedviginc/hedvigprovisioner/tags/	

	

	

	

	

	

	
Install	the	Hedvig	Dynamic	Provisioner	(in	the	hedvig	namespace)	by	running	the	
following	command	-

# ./install_hedvig.sh -n hedvig	
Installer assumes you have deployed Kubernetes. If this is an OpenShift
deployment, make sure 'oc'	
is in the $PATH.	

serviceaccount/hedvig created	
clusterrole.rbac.authorization.k8s.io/hedvig created	
clusterrolebinding.rbac.authorization.k8s.io/hedvig created	
configmap/hedvig-launcher-config created	
deployment.extensions/hedvig created	
Hedvig deployment definition is available in /root/hedvig-installer/hedvig-de
ployment.yaml.	
Started Hedvig Provisioner in namespace "hedvig".	
	
+----------------------+----------------+--------+---------+	
| NAME | STORAGE DRIVER | ONLINE | VOLUMES |	
+----------------------+----------------+--------+---------+	
| hedvig-block-backend | hedvig-block | true | 0 |	
+----------------------+----------------+--------+---------+	
Create the backend in namespace "hedvig".	

	
Note:	Hedvig	Dynamic	Provisioner	only	supports	“hedvig-block-backend”	today.	Therefore,	
all	the	persistent	volumes	provisioned	will	have	their	access	modes	set	to	
“ReadWriteOnce”.	
	
Using the Hedvig Dynamic Provisioner	

This	section	describes	the	Kubernetes	workflows	involved	in	provisioning	and	managing	
persistent	volumes.	
	

	

	

Add a storage class	

A	StorageClass	can	be	created	by	providing	a	unique	name	for	the	storage	class	and	
specifying	the	provisioner	to	be	used	for	the	storage	class.	The	following	manifest	creates	a	
default	StorageClass	for	Hedvig:	
	

apiVersion: storage.k8s.io/v1beta1	
kind: StorageClass	
metadata:	
 name: sc-hedvig-default	
provisioner: hedvig.io/provisioner	
parameters:	
 backendType: "hedvig-block"	

	
In	addition	to	this,	storage	classes	can	be	customized	by	providing	Hedvig	virtual	disk	
attributes	as	parameters.	The	following	manifest	creates	a	StorageClass	with	compression	
and	deduplication	enables	for	persistent	volumes:	
	

apiVersion: storage.k8s.io/v1beta1	
kind: StorageClass

metadata:	
 name: sc-hedvig-compressed-dedup	
provisioner: hedvig.io/provisioner	
parameters:	
 backendType: "hedvig-block"	
 compressed: "true"	
 dedupEnable: "true"	

	
	
	

	

	

	

	

	

	

	
The	set	of	all	the	Hedvig	virtual	disk	parameters	are	listed	in	the	following	table	–	

Key	 Values	
Default	
Value	 Notes	

dedupEnable	 true/false	 false	 	

compressed	 true/false	 false	 	

cacheEnable	 true/false	 false	 	

rf	 1	to	6	 3	 	

rp	 Agnostic/RackAware/
DataCenterAware	

Agnostic	 	

dcNames	 comma-separated	list	
of	data	center	names	

	 This	applies	only	to	a	
replication	policy	(rp)	of	
DataCenterAware	

diskResidence	 flash/hdd	 hdd	 In	an	all-flash	cluster,	
diskResidence	should	
always	be	set	to	flash	

encryptionEnabl
e	

true/false	 false	 	

blockSize	 512/4096	 4096	 	

description	 any	string	 	 	

	
	

Provision a volume

A	persistent	volume	is	be	dynamically	provisioned	on	Hedvig	by	creating	a	
PersistentVolumeClaim.	The	following	manifest	creates	a	PersistentVolumeClaim	with	the	
StorageClass	created	in	the	previous	section:	

	

	

	

	

	

	

	

	

apiVersion: v1	
kind: PersistentVolumeClaim	
metadata:

 name: pvc-centos-test	
 annotations:	
 volume.beta.kubernetes.io/storage-class: sc-hedvig-default	
spec:	
 accessModes:	
 - ReadWriteOnce	
 resources:	
 requests:	
 storage: 10Gi	

	
This	results	in	the	creation	of	a	PersistentVolume	(and	a	corresponding	Hedvig	virtual	
disk),	which	is	bound	to	the	PersistentVolumeClaim	pvc-centos-test.	

The	default	reclaim	policy	for	the	dynamically	created	persistent	volumes	is	set	to	“Delete”.	
If	the	PersistentVolumeClaim	is	deleted,	the	PersistentVolume	bound	to	it	(and	the	
corresponding	Hedvig	virtual	disk)	are	also	deleted.	

In	order	to	retain	a	PersistentVolume	beyond	the	lifetime	of	its	PersistentVolumeClaim,	set	
the	reclaim	policy	to	“Retain”	as	shown	below.	

	

	

	

	

	

	

apiVersion: v1	
kind: PersistentVolumeClaim	
metadata:	
 name: pvc-centos-test	
 annotations:	
 volume.beta.kubernetes.io/storage-class: sc-hedvig-default	
 provisioner.hedvig.io/reclaimPolicy: Retain	
spec:	
 accessModes:	
 - ReadWriteOnce	
 resources:	
 requests:	
 storage: 10Gi

	

Choose a filesystem

The	default	filesystem	type	for	the	dynamically	created	persistent	volumes	is	set	to	“xfs”.	
This	can	be	changed	by	using	an	annotation	in	the	PersistentVolumeClaim.	Kubernetes	
currently	supports	the	following	filesystems	-	ext2/3/4	and	xfs.	

apiVersion: v1	
kind: PersistentVolumeClaim	
metadata:	
 name: pvc-centos-test	
 annotations:	
 volume.beta.kubernetes.io/storage-class: sc-hedvig-default	
 provisioner.hedvig.io/reclaimPolicy: Retain	
 provisioner.hedvig.io/fileSystem: ext4	
spec:	
 accessModes:	
 - ReadWriteOnce	
 resources:	
 requests:	
 storage: 10Gi

	

	

	

	

	

	

	

Kubernetes	added	support	for	custom	mount	options	for	certain	native	PersistentVolume	
types	(for	e.g.	iSCSI)	in	version	1.9	through	the	PersistentVolumeSpec.	
	

Mount	options	must	be	specified	in	the	storage	class	and	any	PersistentVolume	created	
using	that	storage	class	will	be	mounted	using	the	corresponding	mount	options.	

	
The	following	manifest	describes	a	StorageClass	with	custom	mount	options:	

apiVersion: storage.k8s.io/v1beta1	
kind: StorageClass	
metadata:	
 name: sc-hedvig-custom-mount	
provisioner: hedvig.io/provisioner	
mountOptions: ["noatime","nodiratime","max_batch_time=0"]	
parameters:	
 backendType: "hedvig-block"	

	
Caveats	while	using	mount	options	*	Kubernetes	does	not	validate	the	mount	options	
specified.	Therefore,	if	the	mount	options	specified	do	not	apply	to	the	filesystem	type	
chosen	for	the	PV,	the	mount	call	will	fail.	*	Certain	mount	options	are	dependent	on	the	
kernel	settings	of	the	host	running	the	kubelet	and	can	cause	the	mount	call	to	fail.	

	

Consume the volume

The	persistent	volume	can	be	consumed	by	creating	a	Pod	using	the	
PersistentVolumeClaim	created	in	the	previous	section.	The	following	manifest	creates	a	
Pod	and	mounts	the	persistent	volume	under	“/data”	within	the	application	container.	

	

	

kind: Pod	
apiVersion: v1	
metadata:	
 name: centos-test	
spec:	
 volumes:	
 - name: pv-centos-test	
 persistentVolumeClaim:	
 claimName: pvc-centos-test

containers:	
 - name: ctr-centos-test	
 image: centos	
 command: ["/bin/sh"]	
 args: ["-c", "while true; do sleep 10; done"]	
 volumeMounts:	
 - mountPath: "/data"	
 name: pv-centos-test

